17 resultados para potassium permanganate

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compared to packings trays are more cost effective column internals because they create a large interfacial area for mass transfer by the interaction of the vapour on the liquid. The tray supports a mass of froth or spray which on most trays (including the most widely used sieve trays) is not in any way controlled. The two important results of the gas/liquid interaction are the tray efficiency and the tray throughput or capacity. After many years of practical experience, both may be predicted by empirical correlations, despite the lack of understanding. It is known that the tray efficiency is in part determined by the liquid flow pattern and the throughput by the liquid froth height which in turn depends on the liquid hold-up and vapour velocity. This thesis describes experimental work on sieve trays in an air-water simulator, 2.44 m in diameter. The liquid flow pattern, for flow rates similar to those used in commercial scale distillation, was observed experimentally by direct observation; by water-cooling, to simulate mass transfer; use of potassium permanganate dye to observe areas of longer residence time; and by height of clear liquid measurements across the tray and in the downcomer using manometers. This work presents experiments designed to evaluate flow control devices proposed to improve the gas liquid interaction and hence improve the tray efficiency and throughput. These are (a) the use of intermediate weirs to redirect liquid to the sides of the tray so as to remove slow moving/stagnant liquid and (b) the use of vapour-directing slots designed to use the vapour to cause liquid to be directed towards the outlet weir thus reducing the liquid hold-up at a given rate i.e. increased throughput. This method also has the advantage of removing slow moving/stagnant liquid. In the experiments using intermediate weirs, which were placed in the centre of the tray. it was found that in general the effect of an intermediate weir depends on the depth of liquid downstream of the weir. If the weir is deeper than the downstream depth it will cause the upstream liquid to be deeper than the downstream liquid. If the weir is not as deep as deep as the downstream depth it may have little or no effect on the upstream depth. An intermediate weir placed at an angle to the direction of flow of liquid increases the liquid towards the sides of the tray without causing an increase in liquid hold-up/ froth height. The maximum proportion of liquid caused to flow sideways by the weir is between 5% and 10%. Experimental work using vapour-directing slots on a rectangular sieve tray has shown that the horizontal momentum that is imparted to the liquid is dependent upon the size of the slot. If too much momentum is transferred to the liquid it causes hydraulic jumps to occur at the mouth of the slot coupled with liquid being entrained, The use of slots also helps to eliminate the hydraulic gradient across sieve trays and provides a more uniform froth height on the tray. By comparing the results obtained of the tray and point efficiencies, it is shown that a slotted tray reduces both values by approximately 10%. This reduction is due to the fact that with a slotted tray the liquid has a reduced residence time Ion the tray coupled also with the fact that large size bubbles are passing through the slots. The effectiveness of using vapour-directing slots on a full circular tray was investigated by using dye to completely colour the biphase. The removal of the dye by clear liquid entering the tray was monitored using an overhead camera. Results obtained show that the slots are successful in their aim of reducing slow moving liquid from the sides of the tray, The net effect of this is an increase in tray efficiency. Measurements of slot vapour-velocity found it to be approximately equal to the hole velocity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The organic matter in five oil shales (three from the Kimmeridge Clay sequence, one from the Oxford Clay sequence and one from the Julia Creek deposits in Australia) has been isolated by acid demineralisation, separated into kerogens and bitumens by solvent extraction and then characterised in some detail by chromatographic, spectroscopic and degradative techniques. Kerogens cannot be characterised as easily as bitumens because of their insolubility, and hence before any detailed molecular information can be obtained from them they must be degraded into lower molecular weight, more soluble components. Unfortunately, the determination of kerogen structures has all too often involved degradations that were far too harsh and which lead to destruction of much of the structural information. For this reason a number of milder more selective degradative procedures have been tested and used to probe the structure of kerogens. These are: 1. Lithium aluminium hydride reduction. - This procedure is commonly used to remove pyrite from kerogens and it may also increase their solubility by reduction of labile functional groups. Although reduction of the kerogens was confirmed, increases in solubility were correlated with pyrite content and not kerogen reduction. 2. O-methylation in the presence of a phase transfer catalyst. - By the removal of hydrogen bond interactions via O-methylation, it was possible to determine the contribution of such secondary interactions to the insolubility of the kerogens. Problems were encountered with the use of the phase transfer catalyst. 3. Stepwise alkaline potassium permanganate oxidation. - Significant kerogen dissolution was achieved using this procedure but uncontrolled oxidation of initial oxidation products proved to be a problem. A comparison with the peroxytrifluoroaceticacid oxidation of these kerogens was made. 4. Peroxytrifluoroacetic acid oxidation. - This was used because it preferentially degrades aromatic rings whilst leaving any benzylic positions intact. Considerable conversion of the kerogens into soluble products was achieved with this procedure. At all stages of degradation the products were fully characterised where possible using a variety of techniques including elemental analysis, solution state 1H and 13C nuclear magnetic resonance, solid state 13C nuclear magnetic resonance, gel-permeationchromatography, gas chromatography-mass spectroscopy, fourier transform infra-red spectroscopy and some ultra violet-visible spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The binding of iron (59Fe) and gallium (67Ga) to the plasma protein transferrin (Tf) was investigated by G75 gel filtration chromatography in control patients and treated and untreated patients with Parkinson's disease (PD). Fe-Tf binding was 100% in all controls and PD patients suggesting that a defect in Fe-Tf binding was not involved in the aetiology of PD. Ga-Tf binding was significantly reduced in both untreated and treated PD patients compared to controls. In addition, treated PD patients had significantly higher Ga-Tf binding than untreated patients. A reduction in metal binding to Tf could result in the increase of a low molecular weight species which may more readily enter the CNS. Alternatively, it could lead to a decrease in the transport of essential metals into the brain via the Tf receptor system. A significant elevation in neopterin was demonstrated within the plasma of untreated PD patients compared to controls suggesting the activation of a cellular immune response. Furthermore, plasma neopterin was lower in treated compared to untreated PD patients, although the difference was not significant. There was no evidence for the activation of the humoral immune response in untreated or treated PD patients as measured by circulating immune complex (CIC) levels within the plasma. An inverse relationship between Ga-Tf binding and neopterin was observed in untreated PD patients. The addition of oxidants in the form of potassium permanganate and activated manganese dioxide reduced Ga-Tf binding in control plasma. However, relatively little response was observed using monocyte preparations. The results suggest that oxidants produced by activation of the cellular immune system could damage the Tf molecule thereby reducing its ability to bind metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of extracellular application of arginine vasopressin (AVP) upon membrane currents in L6 skeletal myocytes was investigated using the whole-cell configuration of the patch-clamp technique. At O mV AVP produced large amplitude, transient outward currents that reversed when the clamping potential was changed to -100 mV (negative to EK) The effects of alterations in the extracellular K+ concentration upon the current reversal potential suggested that the current elicited by AVP was carried mainly by K+ ions. Intracellular dialysis with 10 μM inositol 1,4,5-trisphosphate (InsP3) elicited similar currents but only in 6/14 cells. Inclusion of 5 mg ml-1 heparin in the intracellular solutions was ineffective at inhibiting the current responses to AVP. The AVP-induced current was totally abolished when the intracellular EGTA concentration was increased from 0.05 mM to 10 mM or Ca2+ was removed from the extracellular perfusing solution. These results suggest that AVP produces activation of a Ca2+-sensitive K+ conductance in L6 skeletal myocytes by a process dependent upon extracellular Ca2+ and not intracellular Ca2+ release. © 1995 Academic Press. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ionic liquid based on 1-butyl-3-methylimidazolium hexafluorophosphate is used as an efficient reusable reaction medium in the N-alkylation of cyclic imides with alkyl halides promoted by fluoride ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various alkyl aryl trithiocarbonates were readily prepared in good yields by the S-arylation of potassium carbonotrithioates with diaryliodonium salts in the room-temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4). The ionic liquid can be recycled and reused.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) is used as a ‘green' recyclable alternative to classical molecular solvents for the nucleophilic substitution reaction of a-tosyloxy ketones with potassium salts of aromatic acids. Significant rate enhancement and improved yields have been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diagnosis of ocular disease is increasingly important in optometric practice and there is a need for cost effective point of care assays to assist in that. Although tears are a potentially valuable source of diagnostic information difficulties associated with sample collection and limited sample size together with sample storage and transport have proved major limitations. Progressive developments in electronics and fibre optics together with innovation in sensing technology mean that the construction of inexpensive point of care fibre optic sensing devices is now possible. Tear electrolytes are an obvious family of target analytes, not least to complement the availability of devices that make the routine measurement of tear osmolarity possible in the clinic. In this paper we describe the design, fabrication and calibration of a fibre-optic based electrolyte sensor for the quantification of potassium in tears using the ex vivo contact lens as the sample source. The technology is generic and the same principles can be used in the development of calcium and magnesium sensors. An important objective of this sensor technology development is to provide information at the point of routine optometric examination, which would provide supportive evidence of tear abnormality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CHCOOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CHCOOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend is observed for the model compound, chlorogenic acid. The addition of potassium does not produce a dramatic change in the tar product distribution, although its addition to chlorogenic acid promoted the generation of cyclohexane and phenol derivatives. Postulated thermal decomposition schemes for chlorogenic acid are presented. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Little is known about the pharmacokinetics of potassium canrenoate/canrenone in paediatric patients WHAT THIS STUDY ADDS • A population pharmacokinetic model has been developed to evaluate the pharmacokinetics of canrenone in paediatric patients who received potassium canrenoate as part of their therapy in the intensive care unit. AIMS To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate to paediatric patients. METHODS Data were collected prospectively from 23 paediatric patients (2 days to 10 years of age; median weight 4 kg, range 2.16–28.0 kg) who received intravenous potassium canrenoate (K-canrenoate) as part of their intensive care therapy for removal of retained fluids, e.g. in pulmonary oedema due to chronic lung disease and for the management of congestive heart failure. Plasma samples were analyzed by HPLC for determination of canrenone (the major metabolite and pharmacologically active moiety) and the data subjected to pharmacokinetic analysis using NONMEM. RESULTS A one compartment model best described the data. The only significant covariate was weight (WT). The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) were CL/F (l h−1) = 11.4 × (WT/70.0)0.75 and V/F (l) = 374.2 × (WT/70) where WT is in kg. The values of CL/F and V/F in a 4 kg child would be 1.33 l h−1 and 21.4 l, respectively, resulting in an elimination half-life of 11.2 h. CONCLUSIONS The range of estimated CL/F in the study population was 0.67–7.38 l h−1. The data suggest that adjustment of K-canrenoate dosage according to body weight is appropriate in paediatric patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate (K-canrenoate) in paediatric patients. Methods: Data were collected prospectively from 37 paediatric patients (median weight 2.9 kg, age range 2 days–0.85 years) who received intravenous K-canrenoate for management of retained fluids, for example in heart failure and chronic lung disease. Dried blood spot (DBS) samples (n = 213) from these were analysed for canrenone content and the data subjected to pharmacokinetic analysis using nonlinear mixed-effects modelling. Another group of patients (n = 16) who had 71 matching plasma and DBS samples was analysed separately to compare canrenone pharmacokinetic parameters obtained using the two different matrices. Results: A one-compartment model best described the DBS data. Significant covariates were weight, postmenstrual age (PMA) and gestational age. The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) in DBS were CL/F (l/h) = 12.86 ×  (WT/70.0)0.75 × e [0.066 ×  (PMA - 40]) and V/F (l) = 603.30 ×  (WT/70) × (GA/40)1.89 where weight is in kilograms. The corresponding values of CL/F and V/F in a patient with a median weight of 2.9 kg are 1.11 l/h and 20.48 l, respectively. Estimated half-life of canrenone based on DBS concentrations was similar to that based on matched plasma concentrations (19.99 and 19.37 h, respectively, in 70 kg patient). Conclusion: The range of estimated CL/F in DBS for the study population was 0.12–9.62 l/h; hence, bodyweight-based dosage adjustment of K-canrenoate appears necessary. However, a dosing scheme that takes into consideration both weight and age (PMA/gestational age) of paediatric patients seems more appropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short rotation willow coppice (SRC) and a synthetic biomass, a mixture of the basic biomass components (cellulose, hemicellulose and lignin), have been investigated for the influence of potassium on their pyrolysis behaviours. The willow sample was pre-treated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with potassium. The same type of pre-treatment was applied to components of the synthetic biomass. Characterisation was performed using thermogravimetric analysis with measurement of products by means of Fourier transform infrared spectroscopy (TGA-FTIR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). A comparison of product distributions and kinetics are reported. While the general features of decomposition of SRC are described well by an additive behaviour of the individual components, there are some differences in the magnitude of the influence of potassium, and on the products produced. For both SRC and the synthetic biomass, TGA traces indicate catalytic promotion of both of the two-stages of biomass decomposition, and potassium can lower the average apparent first-order activation energy for pyrolysis by up to 50 kJ/mol. For both SRC and synthetic biomass the yields and distribution of pyrolysis products have been influenced by the presence of the catalyst. Potassium catalysed pyrolysis increases the char yields markedly and this is more pronounced for synthetic biomass than SRC. Gas evolution profiles during pyrolysis show the same general features for both SRC and synthetic biomass. Relative methane yields increase during the char formation stage of pyrolysis of the potassium doped samples. The evolution profiles of acetic acid and formaldehyde change, and these products are seen in lower relative amounts for both the demineralised samples. A greater variation in pyrolysis products is observed from the treated SRC samples compared to the different synthetic biomass samples. Furthermore, substituted phenols from lignin pyrolysis are more dominant in the pyrolysis profiles of the synthetic biomass than of the SRC, implying that the extracted lignins used in the synthetic biomass yield a greater fraction of monomeric type species than the lignocellulosic cell wall material of SRC. For both types of samples, PY-GS-MS analyses show that potassium has a significant influence on cellulose decomposition markers, not just on the formation of levoglucosan, but also other species from the non-catalysed mechanism, such as 3,4-dihydroxy-3-cyclobutene-1,2-dione. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and dynamics of methane in hydrated potassium montmorillonite clay have been studied under conditions encountered in sedimentary basin and compared to those of hydrated sodium montmorillonite clay using computer simulation techniques. The simulated systems contain two molecular layers of water and followed gradients of 150 barkm-1 and 30 Kkm-1 up to a maximum burial depth of 6 km. Methane particle is coordinated to about 19 oxygen atoms, with 6 of these coming from the clay surface oxygen. Potassium ions tend to move away from the center towards the clay surface, in contrast to the behavior observed with the hydrated sodium form. The clay surface affinity for methane was found to be higher in the hydrated K-form. Methane diffusion in the two-layer hydrated K-montmorillonite increases from 0.39×10-9 m2s-1 at 280 K to 3.27×10-9 m2s-1 at 460 K compared to 0.36×10-9 m2s-1 at 280 K to 4.26×10-9 m2s-1 at 460 K in Na-montmorillonite hydrate. The distributions of the potassium ions were found to vary in the hydrates when compared to those of sodium form. Water molecules were also found to be very mobile in the potassium clay hydrates compared to sodium clay hydrates. © 2004 Elsevier Inc. All All rights reserved.